Skip to main content

Hydroinformatics to make farms SMART



Smart farming focuses on increasing farm productivity through the use of technology - both hardware and software. Smart farming is concerned with the management of farms, plantations, and all associated farming activities through the use of IoT, drones, robotics, machinery, and artificial intelligence to determine a path to predictable farm output.

Smart farming is concerned with the management of farm activities through the use of data obtained from various sources (historical, geographical, and instrumental). Technological advancement does not necessarily imply that a system is intelligent. Smart agriculture technologies distinguish themselves by their ability to collect and analyze data. Smart farming uses hardware (Internet of Things) and software (Software as a Service or SaaS) to collect data and provide actionable insights to manage all farm operations, both pre and post-harvest.

Hydroinformatics, on the other hand, is a subject that deals with the application of data science and ICT in hydrology, hydropower, and hydraulic engineering. Data is also collected and analyzed here, and the process of water management for the intended use is optimally controlled using hard and software with the help of the collected data.

This article will demonstrate five different products that illustrate "How Hydroinformatics is making a farm "smart."


Click here to read the entire article.


#smartfarming #watermanagement #smartwatermanagement #hydro



Popular posts from this blog

Five open source free hydrologic models that you can use to model runoff of micro to macro watersheds

The principal objective of hydrologic models is to forecast the runoff of a surface water body, especially dendritic systems like rivers, streams, etc. The inputs to these models are generally Rainfall/Precipitation, Soil Characteristics, and other Climatic parameters like evapotranspiration, humidity, etc. LULC and geo-morphology are also used as the required input parameters of the hydrologic models. Both input and output of these models are temporally as well as spatially variable. Now the resolution varies with different models. Some models consider all the sub-basins to be a single watershed and determine the output based on the characteristics of this single watershed(lumped).In contrast, some other models will consider the {impact|effect} of each of the sub-basins on the central outflow of the watershed(distributed).In a few models, the entire watershed is divided into grids or units of uniform dimension. However, the accuracy is highest for the models, which considers the {impa...

Five project ideas for "Hydroinformatics in Groundwater"

     In recent years, advanced soft computation techniques such as Multi-Criteria Decision Making and Geographical Information Systems have been widely used to solve water resource development problems. Hydroinformatics (Hydro means Hydrus or water, and informatics means information science) is a branch of science concerned with the application of advanced soft computation techniques and information and communication technologies (ICTs) to water-related problems. The following are five hydro informatics project topics that can be applied to groundwater problems. Complete Article at  HydroGeek Thanks, @Mrinmoy's Page @data_hydrology , @Merchandise or @ @products_sustainability Add to Listy /

5 Most Sustainable Decision Making Techniques Used In Water Resources Management

This video depicts the application of MCDM and Optimization Techniques in Water Resource Management Problems. A total of five studies were discussed which have the maximum citation among the papers published under the topic of Water Resource Management.  The video also provides the links to the tutorials of five Multi-Attribute Decision-Making techniques and five Multi-Objective Decision-Making methods which are mostly used in solving decision-making problems in sustainable water management objectives. Thanking you, Dr.Mrinmoy Majumder Subscribe to Hydrogeek Enroll in the MCDM course