Skip to main content

Hydroinformatics to make farms SMART



Smart farming focuses on increasing farm productivity through the use of technology - both hardware and software. Smart farming is concerned with the management of farms, plantations, and all associated farming activities through the use of IoT, drones, robotics, machinery, and artificial intelligence to determine a path to predictable farm output.

Smart farming is concerned with the management of farm activities through the use of data obtained from various sources (historical, geographical, and instrumental). Technological advancement does not necessarily imply that a system is intelligent. Smart agriculture technologies distinguish themselves by their ability to collect and analyze data. Smart farming uses hardware (Internet of Things) and software (Software as a Service or SaaS) to collect data and provide actionable insights to manage all farm operations, both pre and post-harvest.

Hydroinformatics, on the other hand, is a subject that deals with the application of data science and ICT in hydrology, hydropower, and hydraulic engineering. Data is also collected and analyzed here, and the process of water management for the intended use is optimally controlled using hard and software with the help of the collected data.

This article will demonstrate five different products that illustrate "How Hydroinformatics is making a farm "smart."


Click here to read the entire article.


#smartfarming #watermanagement #smartwatermanagement #hydro



Popular posts from this blog

Online Innternship Opportunity : Optimal Energy Allocation in Paper Industry by Nature Based Optimization Techniques

Summary • The paper industry is a profitable and essential sector for sustainable livelihood. • Unplanned power allocation among industry units is a major cause of industry losses. • Bio-inspired optimization techniques, such as the Moth Flame Optimization Technique (MFT), Water Cycle Optimization (WCO), and Fish Foraging Algorithm (FFA), are being used to identify optimal solutions. • These population-based algorithms consider every part of the search domain to find the optimal solution. • These techniques can help allocate power optimally and sustainably, ensuring no compromise in the quality of the output and expenditures are allocated for essential needs only. You may also like :   HydroGeek: The newsletter for researchers of water resources https://hydrogeek.substack.com/ Baipatra VSC: Enroll for online courses for Free http://baipatra.ws Energy in Style: Participate in Online Internships for Free http://energyinstyle.website Innovate S: Online Shop for Water Researchers ...

Five New Ideas for Opening Start Ups in Water Conservation

PPT Link / Video Link Photo by Naja Bertolt Jensen on Unsplash "Water is a key element for the process industry and a core component for recycling and sustainable management. In industry, water fulfills many functions, including its use as raw material, as a means of transport as well as its use for cleaning and cooling"( source ) "The global Smart Water Management market size is expected to grow USD 13.8 billion in 2021 to USD 22.4 billion by 2026, at a Compound Annual Growth Rate (CAGR) of 10.1% during the forecast period"( source ). Intelligent water conservation and management techniques need to be adopted by the industry such that water can be optimally utilized. Now as per the forecast and recent occurrence of extreme events the necessity of such management has become more significant. Based on this need, some start-up businesses can be established which can help to achieve the water conservation goals. Five such ideas are discussed below. 1)Climate Risk Ass...

WRF Hydro

The WRF-Hydro® Project creates cutting-edge hydrometeorological and hydrologic models, as well as modelling support tools, to address important water challenges around the world. As an open platform, we aspire to create and promote a diverse and inclusive community of hydrologic scientists and practitioners to satisfy the global demand for water resource planning, hazard prediction, and mitigation. Water has no limits, and neither should the society that studies it. The WRF-Hydro architecture simplifies integrating hydrological models into the WRF framework, offering a scalable environment for hypothesis testing, sensitivity analysis, data assimilation, and environmental prediction. It uses community-based development processes, with NCAR and other NSF entities developing support structures. WRF-Hydro®, an open-source community model, is utilised for a variety of tasks, including flash flood prediction, regional hydroclimate impact assessment, seasonal forecasting of water resources, a...