Skip to main content

Underwater Image Processing 18of20



For more details: https://open.substack.com/pub/veryshorttermcourse/p/internship-3-underwater-image-processing?r=c8bxy&utm_campaign=post&utm_medium=web
"Submarine underwater image processing" leverages advanced techniques like AI and deep learning to enhance the quality of images captured by underwater drones and submarines, enabling detailed analysis of the ocean floor through "AI-assisted underwater mapping." This technology utilizes "deep learning for ocean floor analysis," allowing for automated identification of marine life, geological features, and potential hazards. By applying "underwater drone image enhancement" algorithms, researchers can overcome the inherent challenges of underwater imaging, including low visibility and color distortion, leading to improved "underwater image quality improvement with AI." 

This has significant implications for both scientific research, with applications in marine biology and environmental monitoring, and defense operations, where "real-time underwater image processing for defense" is crucial for surveillance and navigation. However, "challenges of underwater image processing" like light scattering and turbidity must be addressed to achieve optimal results in diverse underwater environments.

Key points:
  • Image enhancement:
    AI algorithms are used to improve the clarity and color accuracy of underwater images captured by submarines and drones.
  • Ocean floor mapping:
    Deep learning models can analyze underwater imagery to create detailed maps of the seabed, identifying geological features and potential hazards.
  • Scientific applications:
    Researchers can study marine life, monitor coral reef health, and assess environmental changes with enhanced underwater imagery.
  • Defense applications:
    Real-time image processing allows for underwater surveillance and navigation in challenging environments.
  • Technical challenges:
    Addressing issues like light attenuation, backscatter, and turbidity is crucial for accurate underwater image analysis.

Popular posts from this blog

Eight most common impurities observed in water supplied to domestic households

The water supplied to domestic households has many types of contaminants which have the potential to create health irregularities in the consumer family. Among these contaminants, eight most common impurities were identified, and the type of filter which can remove or reduce them was delineated in the figure. Before procuring a water filter remember to see this chart. It will help to understand the impurities that the selected water filter can remove. Any water filters available in the market are generally made of one or more of these filters. To decide wisely use the concepts of MCDM to select your filters. Compare the filters available in the market with respect to Cost, Contaminant Removal Efficiency, Maintenance requirement, and type of filters used and rate each filter based on these factors with the help of AHP or ANP techniques. The result will be the filter that will be most efficient for your use. You can also use the ODM tool to come to a decision regarding the procurement o...

How to use Goodrich Flood Routing Method for Predicting Outflow Hydrograph of a Reservoir ?

A mathematical method called the Goodrich Method of Flood Routing is used to forecast how much water would flow through a river or channel during a flood. When determining the downstream water flow rate, the channel's geometry, roughness, and slope are all considered. With the use of this technique, hydrologists and engineers can better evaluate the possible effects of flooding and decide how best to safeguard infrastructure and populations. It makes more precise flood prevention measures possible by properly predicting the behaviour of water under different situations. In order to better inform strategies for sustainable development, the Goodrich Method also evaluates how land use patterns affect the likelihood of flooding. It is a flexible tool for planning for and responding to disasters. Clcik below to watch the video :  https://youtu.be/PeizOC0fjKs You may also like : HydroGeek: The newsletter for researchers of water resources https://hydrogeek.substack.com/ Baipatra VSC: E...

Five open source free hydrologic models that you can use to model runoff of micro to macro watersheds

The principal objective of hydrologic models is to forecast the runoff of a surface water body, especially dendritic systems like rivers, streams, etc. The inputs to these models are generally Rainfall/Precipitation, Soil Characteristics, and other Climatic parameters like evapotranspiration, humidity, etc. LULC and geo-morphology are also used as the required input parameters of the hydrologic models. Both input and output of these models are temporally as well as spatially variable. Now the resolution varies with different models. Some models consider all the sub-basins to be a single watershed and determine the output based on the characteristics of this single watershed(lumped).In contrast, some other models will consider the {impact|effect} of each of the sub-basins on the central outflow of the watershed(distributed).In a few models, the entire watershed is divided into grids or units of uniform dimension. However, the accuracy is highest for the models, which considers the {impa...