Skip to main content

Seven New Runoff Prediction Models

Seven Most Recent Runoff Prediction Models

Runoff Prediction Models

Runoff Prediction Models(RPM) are those models which predict the runoff or flood peak of a watershed or input runoff to a dam etc. Generally, such models require climatic parameters, geomorphology, soil characteristics, and land cover as input against which a runoff model can predict the monthly, weekly, daily, or even hourly runoff. These models can be spatially distributed or lumped, temporally long or short, data-driven or conceptual. 

In recent years due to the massive development in data-driven and smart concepts like artificial neural networks(ANN), decision trees, and evolutionary algorithms, application of such techniques are now common to develop RPMs. Among data-driven techniques, ANN is the most popular, followed by evolutional algorithms. But compared to the standalone application of neural networks, hybrid models where ANN with conceptual models like HyMOD or HEC is found to be more successful.

Hydrologic models like RPMs need to be calibrated and validated with ground-level primary data and also outputs are compared with the same output from other models. AutoRegressive Integrated Moving Average(ARIMA) was found to be the most used model for comparison.

In the case of selection of RPMs, various statistical indices are used like Root Mean Square Error(RMSE), Mean Absolute Error (MAE), Mean Relative Error(MRE), Nash Sutcliffe Coefficient(NS), Nash Sutcliffe Efficiency(NSE), BIAS, etc. among which NSE and MAR were found to be the most widely used error functions.

Seven Most Recent RPM


The seven most recent Runoff Prediction Models(RPM) are selected based on their accuracy, reliability, ease of use, and recentness. 

If you had found some interesting RPMs published within the last year(2021-22) share them by posting a comment to this post.

Thanks for reading,
@Merchandises or @Shop
Become my friend in Listy/Pearltrees/Twitter

Popular posts from this blog

How to apply Cat Swarm Optimization Techniques in real life optimization problems ?

Techniques known as "Cat Swarm Optimisation" (CSO) are based on an optimization algorithm inspired by nature and the collective behavior of cats. CSO mimics the cooperation and communication among a group of cats to tackle complex optimization issues. It is inspired by the hunting behavior and social interactions of cats. These methods' capacity to efficiently explore broad search spaces and identify ideal answers has drawn a lot of attention in recent years.  The capacity of CSO approaches to managing high-dimensional and non-linear optimization issues is one of its main benefits. Because of this, they can be used in a variety of industries and domains, including data mining, engineering, and finance. Furthermore, CSO algorithms are renowned for their resilience and capacity to function in unpredictable and noisy conditions.  You may also like : HydroGeek: The newsletter for researchers of water resources https://hydrogeek.substack.com/ Baipatra VSC: Enroll for online c...

Eight most common impurities observed in water supplied to domestic households

The water supplied to domestic households has many types of contaminants which have the potential to create health irregularities in the consumer family. Among these contaminants, eight most common impurities were identified, and the type of filter which can remove or reduce them was delineated in the figure. Before procuring a water filter remember to see this chart. It will help to understand the impurities that the selected water filter can remove. Any water filters available in the market are generally made of one or more of these filters. To decide wisely use the concepts of MCDM to select your filters. Compare the filters available in the market with respect to Cost, Contaminant Removal Efficiency, Maintenance requirement, and type of filters used and rate each filter based on these factors with the help of AHP or ANP techniques. The result will be the filter that will be most efficient for your use. You can also use the ODM tool to come to a decision regarding the procurement o...

Seven Most Tenable Application of Artificial Intelligence on Water Resource Management Problems

AI or Artificial Intelligence is a pioneering technique that has enabled the creation of intelligent machines. or smart machines which have the power to self adapt based on the situation presented to them. It requires situations whose response is known and based on this training data set it learns the problems which it has to solve when it is ready. Due to the alarming success with AI in robotics, electronics, etc fields the same technique is now used to solve the problems of water resource management. This ppt shows the seven most notable use of AI in water resources-based problems where satisfactory improvement has encouraged the further application of the technique. View the Presentation Dr.Mrinmoy Majumder, My ResearchGate Id : Mrinmoy_Majumder Home Page: http://www.mrinmoymajumder.com   Author of: Lecture Notes on MCDM Indian Link  ; Global Link :