Skip to main content

How to apply optimization techniques to water resource problems?

"Maximizing or minimizing some function comparative to some set, often demonstrating a range of choices available in a certain situation. The function allows evaluation of the different choices for determining which might be “best.”....Definition of optimization.

In optimization, we try to maximize/minimize/achieve a target value by changing some variables of an objective equation.

Optimization is used to solve problems in a multidisciplinary field including water resources. The problems like solving multi-reservoir optimization, water allocation problems, economic optimization of water-based systems, performance optimization of water treatment plants, etc. can be easily solved by the application of various classical and new optimization techniques.

If you search on the internet, especially through Sciencedirect or Springer Portals you will find multiple papers on the Optimization Technique and its application to water resource problems

For example, the following are some of the contemporary works in this field: 

Saray, Marzieh Hasanzadeh, et al. "Optimization of Water-Energy-Food Nexus considering CO2 emissions from cropland: A case study in northwest Iran." Applied Energy 307 (2022): 118236.

Ward, Frank A., et al. "Economic optimization to guide climate water stress adaptation." Journal of Environmental Management 301 (2022): 113884.

Alam, Gulzar, et al. "Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: Recent advances and prospects." Chemical Engineering Journal 427 (2022): 130011.

To  understand what, when, and how you can apply optimization techniques, one of my following tutorials on the fundamentals of optimization techniques can be useful:





@Mrinmoy's Page
@Merchandise or @bShop
Add to Listy/Recommend@Baipatra

Popular posts from this blog

Five indices that you can use along with GIS to identify Drought

Drought can not be defined as Flood. No single definition is available for drought. The beginning and end of drought are difficult to identify.  Drought can be, however, identified through various indicators such as rainfall, snowpack, streamflow, and more, and these indicators can be used to monitor drought. Different scientists and researchers have developed various indices to help determine the onset, severity, and end of droughts. Drought indices are multiparameter and based on long or short duration observation of data for such parameters which help them create a comprehensible big picture. A drought index value is typically a single number that is calculated based on the data of input parameters generally rainfall, snowpack, evapotranspiration, etc., and is interpreted on a scale of abnormally wet, average, and abnormally dry.( Reference ) The video below elaborates the concept : Although drought is very difficult to determine the significance of drought in agriculture, water...

Five examples of Water Collected from Air

Video Link :  https://youtu.be/AVQJCH-6psg Water from Air is a new concept for the conservation of water by adopting a source that is uncommon and renewable. The most abundant source of freshwater is the Earth’s atmosphere. When atmospheric humidity condenses, it falls as rain. This natural process of condensation is replicated by adopting different technologies, which allows it to make water continuously, even in low humidity conditions. Here are the examples : 1) Airowater Dewpoint Smart "The Airowater Dewpoint Smart is one of the smaller units designed to ensure portability. This unit can make up to 20 litres per day in relative humidity and is also equipped to use city water as the input source to deal with a sudden increase in demand!" 2) Rainmaker "Rainmaker’s Air-to-Water units produce drinking water from the air – no other water source is required. " It uses a turbine that forces air through a heat exchanger, where the air is cooled and condensation takes pl...

How to separate baseflow from Total Storm Runoff ?

In hydrological studies, baseflow separation plays a crucial role in understanding the dynamics of water movement within a watershed. It allows researchers to identify the portion of streamflow that is sustained by groundwater discharge, which is important for assessing the availability and sustainability of water resources. Additionally, baseflow separation helps in determining the contribution of groundwater to streamflow during dry periods or droughts, providing valuable insights for water allocation and planning purposes.  Click here to access the tutorial : https://youtu.be/yvjm5YAc8H4 You may also like : HydroGeek: The newsletter for researchers of water resources https://hydrogeek.substack.com/ Baipatra VSC: Enroll for online courses for Free http://baipatra.ws Energy in Style: Participate in Online Internships for Free http://energyinstyle.website Innovate S: Online Shop for Water Researchers https://baipatra.stores.instamojo.com/ Call for Paper: International Journal of H...