Skip to main content

How to calculate Water Quality Index considering the source type,intended use and climate ?

WQI Calculator



This WQI's primary innovation is that it calculates the WQI based on the type of source from which water is collected, the WQI's intended use, and the local climate at the time the samples were retrieved.

The source or location from where the sample is collected has an impact on the quality of water which the index must incorporate at the time of calculation. The purpose for which the water quality index is calculated changes the weightage of the importance of the different quality parameters. For example, if WQI is calculated for knowing how drinkable the sample is then the weightage of coliform will increase compared to other parameters as the presence of coliform in the drinking water can not be permitted. The climate of the area from where the water is collected is another criterion to consider at the time of calculating the WQI. Based on the climate also the weightage of water quality parameters will vary. There will be a difference in the weight of importance if the samples are collected from a humid climate compared to a sample collected from a dry climate.

The current WQI can account for the influence of sample source, purpose, and climate and predict the indicator accordingly.

Just keep in mind that this calculator is still in beta. Bugs will therefore exist. If you observe anything, please comment on it. Also, if you have any recommendations on how to make this calculator better, please let me know. Thank you for your comments.

Scan the QR below to access the WQI Calculator :

Or visit directly to this link.

Thanking you,
Dr.Mrinmoy Majumder



Popular posts from this blog

Seven Most Tenable Application of Artificial Intelligence on Water Resource Management Problems

AI or Artificial Intelligence is a pioneering technique that has enabled the creation of intelligent machines. or smart machines which have the power to self adapt based on the situation presented to them. It requires situations whose response is known and based on this training data set it learns the problems which it has to solve when it is ready. Due to the alarming success with AI in robotics, electronics, etc fields the same technique is now used to solve the problems of water resource management. This ppt shows the seven most notable use of AI in water resources-based problems where satisfactory improvement has encouraged the further application of the technique. View the Presentation Dr.Mrinmoy Majumder, My ResearchGate Id : Mrinmoy_Majumder Home Page: http://www.mrinmoymajumder.com   Author of: Lecture Notes on MCDM Indian Link  ; Global Link :

Hydroinformatics to make farms SMART

Smart farming focuses on increasing farm productivity through the use of technology - both hardware and software. Smart farming is concerned with the management of farms, plantations, and all associated farming activities through the use of IoT, drones, robotics, machinery, and artificial intelligence to determine a path to predictable farm output. Smart farming is concerned with the management of farm activities through the use of data obtained from various sources (historical, geographical, and instrumental). Technological advancement does not necessarily imply that a system is intelligent. Smart agriculture technologies distinguish themselves by their ability to collect and analyze data. Smart farming uses hardware (Internet of Things) and software (Software as a Service or SaaS) to collect data and provide actionable insights to manage all farm operations, both pre and post-harvest. Hydroinformatics, on the other hand, is a subject that deals with the application of data science an...