Skip to main content

How to calculate Water Quality Index considering the source type,intended use and climate ?

WQI Calculator



This WQI's primary innovation is that it calculates the WQI based on the type of source from which water is collected, the WQI's intended use, and the local climate at the time the samples were retrieved.

The source or location from where the sample is collected has an impact on the quality of water which the index must incorporate at the time of calculation. The purpose for which the water quality index is calculated changes the weightage of the importance of the different quality parameters. For example, if WQI is calculated for knowing how drinkable the sample is then the weightage of coliform will increase compared to other parameters as the presence of coliform in the drinking water can not be permitted. The climate of the area from where the water is collected is another criterion to consider at the time of calculating the WQI. Based on the climate also the weightage of water quality parameters will vary. There will be a difference in the weight of importance if the samples are collected from a humid climate compared to a sample collected from a dry climate.

The current WQI can account for the influence of sample source, purpose, and climate and predict the indicator accordingly.

Just keep in mind that this calculator is still in beta. Bugs will therefore exist. If you observe anything, please comment on it. Also, if you have any recommendations on how to make this calculator better, please let me know. Thank you for your comments.

Scan the QR below to access the WQI Calculator :

Or visit directly to this link.

Thanking you,
Dr.Mrinmoy Majumder



Popular posts from this blog

Five open source free hydrologic models that you can use to model runoff of micro to macro watersheds

The principal objective of hydrologic models is to forecast the runoff of a surface water body, especially dendritic systems like rivers, streams, etc. The inputs to these models are generally Rainfall/Precipitation, Soil Characteristics, and other Climatic parameters like evapotranspiration, humidity, etc. LULC and geo-morphology are also used as the required input parameters of the hydrologic models. Both input and output of these models are temporally as well as spatially variable. Now the resolution varies with different models. Some models consider all the sub-basins to be a single watershed and determine the output based on the characteristics of this single watershed(lumped).In contrast, some other models will consider the {impact|effect} of each of the sub-basins on the central outflow of the watershed(distributed).In a few models, the entire watershed is divided into grids or units of uniform dimension. However, the accuracy is highest for the models, which considers the {impa...

Internship Opportunity at NIT Agartala - "Game theory meets flood resilience: play smart, protect lives."

This internship offers a unique opportunity to apply game theory to real-world flood resilience , equipping participants with strategic decision-making skills that go beyond traditional hydrological modeling. Interns will: ✅ Gain hands-on experience in stakeholder analysis and strategic modeling. ✅ Develop decision-support frameworks that balance cost, risk, and social feasibility. ✅ Work on case studies to bridge theory with practical flood mitigation strategies. ✅ Enhance interdisciplinary expertise , combining hydrology, economics, and policy dynamics. ✅ Build problem-solving skills that can shape future disaster resilience planning. By the end of the program, interns will have a deeper understanding of flood management complexities and a powerful toolkit for strategic problem-solving —essential for careers in hydroinformatics, environmental policy, and infrastructure planning. 🌊🎲 https://www.facebook.com/share/v/1QK714yR1u/ You may also like : HydroGeek: The newsletter ...

Five examples of Water Collected from Air

Video Link :  https://youtu.be/AVQJCH-6psg Water from Air is a new concept for the conservation of water by adopting a source that is uncommon and renewable. The most abundant source of freshwater is the Earth’s atmosphere. When atmospheric humidity condenses, it falls as rain. This natural process of condensation is replicated by adopting different technologies, which allows it to make water continuously, even in low humidity conditions. Here are the examples : 1) Airowater Dewpoint Smart "The Airowater Dewpoint Smart is one of the smaller units designed to ensure portability. This unit can make up to 20 litres per day in relative humidity and is also equipped to use city water as the input source to deal with a sudden increase in demand!" 2) Rainmaker "Rainmaker’s Air-to-Water units produce drinking water from the air – no other water source is required. " It uses a turbine that forces air through a heat exchanger, where the air is cooled and condensation takes pl...