Skip to main content

Seven Techniques You must learn to become a Hydroinformatics Engineer


The interest in and application of data science and machine learning has grown rapidly in recent years. Data science is being used in every traditional subject to reframing well-established, straightforward ideas. The outdated item is dressed in a fresh outfit. Computer-based data mining and synthesis are replacing traditional data analysis techniques. Similarly, the use of data science in water resource management and development is increasing. The need for personnel who are knowledgeable about the pertinent data science as well as the established principles of developing water resources is also present. After reviewing the relevant literature related to data science applications on water-resource development, also known as Hydroinformatics Engineering, it was discovered that would-be hydro informatics engineers must be familiar with the following techniques if they want to pursue a career in this field.

1)Multi-Criteria Decision-Making Techniques
2)Decision Tree
3)Geographic Information Systems
4)Optimization Techniques
5)Artificial Neural Networks
6) Internet of Things
7) Water-Related Instrumentation

To be successful in the field of hydro-informatics engineering, it is critical to have a thorough understanding of and practical experience with the techniques listed above.

Thanking you,
Mrinmoy 

Popular posts from this blog

How to calculate Water Quality Index considering the source type,intended use and climate ?

This WQI's primary innovation is that it calculates the WQI based on the type of source from which water is collected, the WQI's intended use, and the local climate at the time the samples were retrieved. The source or location from where the sample is collected has an impact on the quality of water which the index must incorporate at the time of calculation. The purpose for which the water quality index is calculated changes the weightage of the importance of the different quality parameters. For example, if WQI is calculated for knowing how drinkable the sample is then the weightage of coliform will increase compared to other parameters as the presence of coliform in the drinking water can not be permitted. The climate of the area from where the water is collected is another criterion to consider at the time of calculating the WQI. Based on the climate also the weightage of water quality parameters will vary. There will be a difference in the weight of importance if the sampl...

Five Most Extreme Hydrologic Events that changed the World

Typhoon Tip, Philipines(Collected from : CSMonitor ) Devastating storms, severe flood, acute famine conditions, etc. hydrological events of extreme nature has changed human history. Any event which is not normal is known as an abnormal event. In the case of hydrology, an event that has a return period of more than 100 years is considered Extreme. According to Herring(2020) of Climate.gov, "An extreme event is a time and place in which weather, climate, or environmental conditions—such as temperature, precipitation, drought, or flooding—rank above a threshold value near the upper or lower ends of the range of historical measurements." Though the threshold is not objective, few researchers have defined "extreme events as those that occur in the highest or lowest 5% or 10% of historical measurements". Some have described events by their deviation from the mean, or by their occurrence interval.   Here the most severe five extreme hydrologic events were discussed which ...

Five open source free hydrologic models that you can use to model runoff of micro to macro watersheds

The principal objective of hydrologic models is to forecast the runoff of a surface water body, especially dendritic systems like rivers, streams, etc. The inputs to these models are generally Rainfall/Precipitation, Soil Characteristics, and other Climatic parameters like evapotranspiration, humidity, etc. LULC and geo-morphology are also used as the required input parameters of the hydrologic models. Both input and output of these models are temporally as well as spatially variable. Now the resolution varies with different models. Some models consider all the sub-basins to be a single watershed and determine the output based on the characteristics of this single watershed(lumped).In contrast, some other models will consider the {impact|effect} of each of the sub-basins on the central outflow of the watershed(distributed).In a few models, the entire watershed is divided into grids or units of uniform dimension. However, the accuracy is highest for the models, which considers the {impa...