Skip to main content

Why AI is not used for the location selection of RWH Tanks?


 Rainwater Harvesting (RWH) tanks are innovative systems designed to collect and store rainwater for various purposes. These tanks are typically installed in residential, commercial, or agricultural settings to capture and utilize rainwater runoff from rooftops or other surfaces. By harnessing this valuable resource, RWH tanks help reduce reliance on traditional water sources and contribute to sustainable water management practices. 

 Incorporating AI in the location selection process for RWH tanks can offer several benefits. Firstly, AI algorithms can analyze vast amounts of data, such as rainfall patterns, topography, and land use, to identify optimal locations for tank installations. This can result in more efficient and effective placement of RWH tanks, maximizing their water collection potential. Additionally, AI can continuously monitor and adapt to changing environmental conditions, ensuring that the selected locations remain suitable for rainwater harvesting over time. 

 However, despite its potential benefits, AI is not commonly used for identifying optimal locations for rainwater harvesting tanks. There are several reasons for this, including the lack of awareness about AI technology in the field of water resource management and the limited availability of accurate and reliable data required for training AI models. 


You may also like:

  1. Enroll for Free in Very Short-Term Courses on Data Science, AI, and GIS Applications in Water Resource Development

  2. Participate in the Online Internship Opportunity on Data Science, AI, and GIS Applications in Water and Energy Resources

  3. Create your Own Online Course on Data Science for Water Resource Engineers

  4. Be Sustainable: How to Use WCI and ECI to save water and electricity use?

  5. Confused about which method to use? iDecide will help.

  6. Become an Affiliate of other related books, courses, and products

  7. Guest Posting to this newsletter

  8. Submit your manuscript in New but peer-reviewed journals

  9. Read the book: Introduction to Model Development for Prediction, Simulation, and Optimization

  10. Read the book: GIS in One Page

  11. Read the book: Lecture Notes on MCDM

  12. Preorder: 50 Project Ideas on MCDM and GIS

  13. Host your own App

  14. For website owners

HydroGeek may receive affiliate commissions from some of the links given above. All the commissions will be deposited to NGOs and NPOs after the deduction of the honorariums, maintenance, and taxes for running this site.

Follow me on Gumroad / Twitter / Listly

Popular posts from this blog

Five open source free hydrologic models that you can use to model runoff of micro to macro watersheds

The principal objective of hydrologic models is to forecast the runoff of a surface water body, especially dendritic systems like rivers, streams, etc. The inputs to these models are generally Rainfall/Precipitation, Soil Characteristics, and other Climatic parameters like evapotranspiration, humidity, etc. LULC and geo-morphology are also used as the required input parameters of the hydrologic models. Both input and output of these models are temporally as well as spatially variable. Now the resolution varies with different models. Some models consider all the sub-basins to be a single watershed and determine the output based on the characteristics of this single watershed(lumped).In contrast, some other models will consider the {impact|effect} of each of the sub-basins on the central outflow of the watershed(distributed).In a few models, the entire watershed is divided into grids or units of uniform dimension. However, the accuracy is highest for the models, which considers the {impa...

Internship Opportunity at NIT Agartala - "Game theory meets flood resilience: play smart, protect lives."

This internship offers a unique opportunity to apply game theory to real-world flood resilience , equipping participants with strategic decision-making skills that go beyond traditional hydrological modeling. Interns will: ✅ Gain hands-on experience in stakeholder analysis and strategic modeling. ✅ Develop decision-support frameworks that balance cost, risk, and social feasibility. ✅ Work on case studies to bridge theory with practical flood mitigation strategies. ✅ Enhance interdisciplinary expertise , combining hydrology, economics, and policy dynamics. ✅ Build problem-solving skills that can shape future disaster resilience planning. By the end of the program, interns will have a deeper understanding of flood management complexities and a powerful toolkit for strategic problem-solving —essential for careers in hydroinformatics, environmental policy, and infrastructure planning. 🌊🎲 https://www.facebook.com/share/v/1QK714yR1u/ You may also like : HydroGeek: The newsletter ...

Five examples of Water Collected from Air

Video Link :  https://youtu.be/AVQJCH-6psg Water from Air is a new concept for the conservation of water by adopting a source that is uncommon and renewable. The most abundant source of freshwater is the Earth’s atmosphere. When atmospheric humidity condenses, it falls as rain. This natural process of condensation is replicated by adopting different technologies, which allows it to make water continuously, even in low humidity conditions. Here are the examples : 1) Airowater Dewpoint Smart "The Airowater Dewpoint Smart is one of the smaller units designed to ensure portability. This unit can make up to 20 litres per day in relative humidity and is also equipped to use city water as the input source to deal with a sudden increase in demand!" 2) Rainmaker "Rainmaker’s Air-to-Water units produce drinking water from the air – no other water source is required. " It uses a turbine that forces air through a heat exchanger, where the air is cooled and condensation takes pl...