Floods refer to the overflow of water onto normally dry land, often caused by heavy rainfall, melting snow, or dam failure. They can cause significant damage to infrastructure, agriculture, and human settlements. Studying floods is crucial as it helps us understand their causes, patterns, and impacts on both the natural environment and human societies. This knowledge enables us to develop effective strategies for flood prevention, mitigation, and response, ultimately saving lives and minimizing economic losses. Click here to see the tutorial.
Below is the brief outline :
Outline :
1. Definition
2. Empirical method of Flood Peak Estimation
Rational Equation
Unit hydrograph technique
Flood frequency studies
3. Rational Method
Time of Concentration
Rainfall Intensity
4. Characteristics of Empirical Formulae
5. Dickens Formula
6. Ryves Formula
7. Inglis Formula
8. Fullers Formula
9. Baird and Mcillwraith(1951)
10. Estimation of Flood from Frequency Analysis
11. Probable density function (PDF)
Gumbel distribution
Normal Distribution
Log-Normal Distribution
Normal distribution of the Logarithm of Variate.
Pearson Type III Distribution
Log-Pearson Distribution
Pearson distribution of the Logarithm of the Variates.
12. Plotting Position Probability(PPP)
Bulletin 17B PPP
Weibull PPP for Uniformly Distributed Dataset
Hazen PPP for Uniformly Distributed Dataset
Cunnane PPP for Uniformly Distributed Dataset
13. Determination of the Flood Magnitude
Hydrologic Frequency Analysis
14. Adjustment for Urbanization
Rational Equation(modified for urbanization)
15. Urban Adjustment Factor(Leopold,1968)
16. Probable Maximum Precipitation
Hershfield Method
Frequency Factor Calculation
Homogeneity of Dataset