Skip to main content

How to use dynamic soaring by the Albatrosses in optimization?




What is dynamic soaring?

The dynamic soaring mainly consists of four phases.

Upward Bind

Upward Climb

Downward Bind

Downward Dive

This four-phase consists of a cycle which is referred to as Rayleigh’s Cycles as he was the first to identify this phenomenon by Albatrosses during their long-time flights.

For more details refer to Richardson(2011 & 2014), Uesaka et.al.(2023), etc.

Criteria of Dynamic Soaring

In general, albatross soaring can be accomplished under the following conditions: (1) no wind, no waves, no soaring;(2) Wave-slope soaring can be accomplished in swell without wind; (3) Wind–shear soaring can be accomplished in wind without waves.

What is Wind Shear Soaring?

The average wind speed typically rises with height, starting at almost zero at the ocean's surface. Within about two meters of the water's surface, a thin boundary layer has the greatest vertical wind velocity gradient (largest wind shear) (Fig. 2). In this narrow wind–shear boundary layer close to the surface, the majority of the wind speed increase in an average wind profile occurs.

What is Wave Slope Soaring?

There is an accepted notion that wind moving up a wave's windward face is what primarily causes updrafts over waves (see Pennycuick, 1982, Wilson, 1975). Updrafts, however, have much more intricate structures and causes, such as air displaced upward by the wave surface's orbital velocity and vertical velocities resulting from wind–wave interactions. Both of these can happen at the same time, and they have complex interactions with one another.

What happened during the dynamic soaring of the bird?

When there is no wind and waves on the ocean surface the bird can not soar. But the birds can soar when there is wind speed near the ocean surface is much less compared to that at the higher layers that are located above the heights of the ocean waves. These two zones of different air speeds are separated by the wind shear layer. Now at the time of the upward climb bird tries to extract energy from the interaction of wind with the wave in the lower layers i.e. below the wave height (eg. updrafts or leeways or eddy currents of the waves). This energy is mainly gained at the time of upward bend and used at the time of climb. At this moment both the wind and the bird face the wave head-on.

After it crosses the wind shear if it again tries to come back to the lower layer it extracts the energy from the downward wind at the time of the downward bend and uses it at the time of the downward dive. This time both wind and bird are facing the wave surface at their backside.


You may also like : 

 HydroGeek: The newsletter for researchers of water resources https://hydrogeek.substack.com/ 

Baipatra VSC: Enroll for online courses for Free 

http://baipatra.ws 

Energy in Style: Participate in Online Internships for Free 

http://energyinstyle.website 

Call for Paper: International Journal of HydroClimatic Engineering http://energyinstyle.website/journals/ 

Hydro Geek Newsletter Edition 2023.1 

https://notionpress.com/read/hydro-geek-newsletter-edition-2023-1 

An Introduction to ELECTRE MCDM

https://innovates.gumroad.com/l/electre

Popular posts from this blog

Eight most common impurities observed in water supplied to domestic households

The water supplied to domestic households has many types of contaminants which have the potential to create health irregularities in the consumer family. Among these contaminants, eight most common impurities were identified, and the type of filter which can remove or reduce them was delineated in the figure. Before procuring a water filter remember to see this chart. It will help to understand the impurities that the selected water filter can remove. Any water filters available in the market are generally made of one or more of these filters. To decide wisely use the concepts of MCDM to select your filters. Compare the filters available in the market with respect to Cost, Contaminant Removal Efficiency, Maintenance requirement, and type of filters used and rate each filter based on these factors with the help of AHP or ANP techniques. The result will be the filter that will be most efficient for your use. You can also use the ODM tool to come to a decision regarding the procurement o...

Seven Most Tenable Application of Artificial Intelligence on Water Resource Management Problems

AI or Artificial Intelligence is a pioneering technique that has enabled the creation of intelligent machines. or smart machines which have the power to self adapt based on the situation presented to them. It requires situations whose response is known and based on this training data set it learns the problems which it has to solve when it is ready. Due to the alarming success with AI in robotics, electronics, etc fields the same technique is now used to solve the problems of water resource management. This ppt shows the seven most notable use of AI in water resources-based problems where satisfactory improvement has encouraged the further application of the technique. View the Presentation Dr.Mrinmoy Majumder, My ResearchGate Id : Mrinmoy_Majumder Home Page: http://www.mrinmoymajumder.com   Author of: Lecture Notes on MCDM Indian Link  ; Global Link :

How to use the knowledge of hydroinformatics in opening a start up ?

     Hydroinformatics based StartUps Hydroinformatics is a branch of informatics that concentrates on the application of information and communications technologies (ICTs) in addressing the increasingly serious problems of the equitable and efficient use of water for many different purposes. Here is a list of the startups which use the knowledge and techniques of hydro informatics to solve real-life problems related to the management of water resources. Before the list let us introduce the concept of Start-Up : "A startup is a young company founded by one or more entrepreneurs to develop a unique product or service and bring it to market. By its nature, the typical startup tends to be a shoestring operation, with initial funding from the founders or their friends and families." There are various water-based Start-Ups that use the concept of hydro informatics,i.e., real-time monitoring(RTM), data analysis, Artificial Intelligence( AI) and Machine Learning(ML), and Internet...